

FUTURE OF WORK INSTITUTE

Developing the 'Fatigue Impairment Prediction Suite'

An R Package for Implementing Bio-Mathematical Models

Michael David Wilson @humanfactorsio Timothy Ballard Karina Jorritsma

Research Supported by funding from DST Research Agreement [myIP: 6963]

A Global University

Western Australia | Dubai | Malaysia | Mauritius | Singapore

Outline

- 1. Brief overview/refresher on fatigue research
- 2. Introduction to biomathematical model mechanics
- 3. Fatigue Impairment Prediction Suite (FIPS)

Endurance and Fatigue

- Fatigue is a crucial factor underlying endurance
- A physiological state of reduced mental or physical performance capability
- Fatigue arises from multiple often interacting factors
 - Endogenous biological processes circadian rhythm.
 - Sleep deprivation (acute and chronic)
 - Task factors and motivation (Hockey & Earle, 2006)
- Significant research has associated fatigue with
 - Neurobehavioral deficits, posing risks to operational safety and effectiveness.
 - Decision-making capabilities (Killgore, Balkin, & Wesensten, 2006)
 - Increased risk of human error, including in military settings (Miller, Matsangas, & Shattuck, 2008)
- Terminology: Fatigue; Sleepiness; Fatigue-related performance; Alertness

Fatigue Risk Management Systems

Biomathematical Models

What are BMMs?

- Biomathematical Models of Fatigue
- Dynamic models for predicting "fatigue-related impairments"
- Take in sleep schedule, output predicted fatigue [or equivalent].
- Several peer reviewed and publicly available models:
 - Two & Three Process Models of Alertness (Borbély, 1982; Ingre et al., 2014)
 - Unified Model (Rajdev, Ramakrishnan at colleagues., 2013, 2015, 2016)
- Many commercialised 'black-box' proprietary tools in circulation:
 - SAFTE-based model (note some model formulations published)
 - FAID model
 - CAS, BAM

Basic Mechanics of Fatigue BMMs

Two Process Model: Basic Mechanics

- Majority of BMMs derived from Borbély's (1982) - 'Two-Process Model'
 - Two core functions/processes
 - *S* + *C* = *Alertness/Fatigue*
- Parameters normally fixed, but variation shown in plots.

Limitations of BMMs

- Fixed model parameters derived from populations/averages
- Average model may not be representative of any individual within the sample (Ly et al., 2017)
- Conventional BMMs developed using short-term sleep deprivation studies
- Parameters rarely estimated in practice

Closed Source!

Most proprietary tools are closed source

"Why **exactly** did a model make a particular prediction?" "How can I conduct independent model validation?" "What normalisation was conducted on predicted values?"

Introduction to FIPS Package

- Fatigue Impairment Prediction Suite (FIPS)
- Implemented in R.
- Aims to provide a comprehensive set of functions for estimating and applying biomathematical models (BMMs) of fatigue.
- Open Source (likely GPL v3.0)

Planned 0.1.0 Release: *Q1 2020* Planned 0.2.0 Release: *Q2 2020*

FIPS Feature Comparison

FIPS is a <u>framework</u> for BMM

- Implements *multiple* models
- Supports parameter estimation
- Allows simulation and prediction
- Extendable and introspectable (to be built upon)
- Alternatives (e.g., FAID, SAFTE):
 - Provide modelling tool
 - Implements single model
 - Prediction only

Simulation Interface: Run Simulation

la	2.4000
ha	14.3000
d	-0.0353
g	-0.3814
Ы	12.2000
Cm	0.0000
Ca	2.5000
Р	16.8000
Um	-0.5000
Ua	0.5000
Wc	-5.7200
Wd	-1.5100
SO	7.9600

 sleep.start
 sleep.end
 sleep.id

 1
 2018-05-21 01:00:00
 2018-05-21 08:00:00
 1

 2
 2018-05-21 18:00:00
 2018-05-22 01:00:00
 2

 3
 2018-05-22 11:00:00
 2018-05-22 18:00:00
 3

 4
 2018-05-23 04:00:00
 2018-05-23 11:00:00
 4

 5
 2018-05-23 04:00:00
 2018-05-24 04:00:00
 5

 6
 2018-05-24 14:00:00
 2018-05-24 04:00:00
 6

 7
 2018-05-25 07:00:00
 2018-05-25 14:00:00
 7

 8
 2018-05-26 00:00:00
 2018-05-26 07:00:00
 8

Sleep history information

Parameter vector

Simulation Interface: Run Simulation

•	datetime 🗘	s ‡	÷ ۱	с 🗘	* *	u [‡]	alertness 🌻	KSS 🗘
1	2018-05-20 01:00:00	7.960	NA	-1.36160	-5.720e+00	-9.568e-01	5.642	7.215
2	2018-05-20 01:05:00	7.944	NA	-1.40701	-5.044e+00	-9.652e-01	5.571	7.257
3	2018-05-20 01:10:00	7.927	NA	-1.45176	-4.447e+00	-9.728e-01	5.503	7.298
4	2018-05-20 01:15:00	7.911	NA	-1.49581	-3.921e+00	-9.794e-01	5.436	7.338
5	2018-05-20 01:20:00	7.895	NA	-1.53915	-3.458e+00	-9.851e-01	5.371	7.378
6	2018-05-20 01:25:00	7.879	NA	-1.58176	-3.049e+00	-9.900e-01	5.307	7.416
7	2018-05-20 01:30:00	7.863	NA	-1.62362	-2.688e+00	-9.938e-01	5.245	7.453

Forecasting Fatigue with FIPS

- Built-in visualisation methods
- Summary statistics

Estimating the Parameters

- All simulations here used fixed parameters
- FIPS can perform parameter estimation
 - Additionally requires fatigue measurements (i.e., PVT)
- Enables individualised and tailored predictions

	LOOIC	WAIC
2PM Regression	1576.30 (25.73)	1576.29 (25.73)
2PM Group Estimates	1566.34 (25.54)	1566.30 (25.53)
2PM Individual Estimates	1490.78 (29.64)	1480.32 (30.11)

la	2.4000
ha	14.3000
d	-0.0353
g	-0.3814
bl	12.2000
Cm	0.0000
Ca	2.5000
р	16.8000
Um	-0.5000
Ua	0.5000
Wc	-5.7200
Wd	-1.5100
SO	7.9600

Performance Evaluation

- Data from 43 naval crew over 7-14 day periods (active mission)
 - Full sleep history information (objective)
 - Sleepiness 1-9 (KSS)
 - 10-40 observations per person.
- FIPS is not a model itself, it implements others.
- Two-process model in FIPS compared to SAFTE-FAST

A Two Process Model of Sleep Regulation

A.A. Borbély Institute of Pharmacology, University of Zürich, Zürich, Switzerland

Step 1: Generating Model Predictions

1 correlation per person and model

SAFTE-FAST Performance

Two Process Model Performance

Immediate Conclusions

- Proprietary models are seriously limited by their closed nature
- BMMs must be **introspectable** and **transparent** if we seriously want to **depend** on their predictions in novel contexts
- Parameter estimation not just scientific
- Ultimate approach involves tailoring parameters
 - 'Model training' prior to prediction (requiring measurement).
 - Domain / Watch / Job Role / Individual

FIPS Moving Forward

- Attract industry, researcher, and practitioner interest.
- Refine Bayesian parameter estimation procedures
- Improve GUI version of application (stretch goal)
- Increase validation datasets with industry samples

Thankyou – Question Time

Summary

- Biomathematical models enable fatigue forecasting
- Widely implemented, but limited.
- FIPS is a framework for developing these models.

Contact Information

Michael David Wilson Future of Work Institute, Curtin University

michael.d.wilson@curtin.edu.au www.humanfactors.io

@humanfactorsio

Research Supported by funding from DST Research Agreement [myIP: 6963]

FUTURE OF WORK INSTITUTE

Appendix: Types of Modelling Tools

Appendix: Manifest Fatigue Analyses

	Sleepiness (Fatigue)		
Predictors	Estimates	CI	p
(Intercept)	4.81	4.47 - 5.14	<0.001
Post-Work	0.80	0.62 - 0.98	<0.001
Sleep Duration (L1)	-0.11	-0.180.03	0.008
Time Awake (L1)	0.03	0.01 - 0.04	0.011
Days into Mission	-0.07	-0.100.05	<0.001
Random Effects			
σ^2	2.17		
$ au_{00}$ Subjects	0.82		
ICC	0.27		
N Subjects	42		
Observations	1430		
Marginal R ² / Conditional R ²	8.6% / 33	8.7%	

Appendix: GUI Forecasting of Fatigue with FIPS

Data Upload Interface

Fatigue Simulation	=	
? Introduction	Simulation Start Date & Time:	
🗎 Data Upload	2018-05-01 at 08:00 pm	曲
🕸 Model Setup	Simulation End Date & Time:	
Model Posults	2018-05-01 at 08:00 pm	曲
- Model Results		
	File	
	No file selected	
	Delimiter	
	Comma	-
	Decimal mark	
	Point	-
	Time to parso	
		-
	Timezone to display	-
	Please select a file	
	File not selected	
	File not selected	
	Data Pre-Processing	
	Transform Data	

Working prototype of model setting interface

? Introduction	Widests	
🖿 Data Upload	widgets	
📽 Model Setup	Fatigue Startpoint	Upper Assymptote
2 Model Results	Initial Value of S	Maximum level of sleepiness
	0	24.12
	Lower Assymptote	Tau Sleep
	Minimum level of sleepiness	controls rate of decay in S during sleep
	0	1
	Tau Wake	Tau Lambda
	controls rate of rise in S during wake	rate of change in lower assymptote
	18.2	4.06
	Phi	Карра
	phase at beginning of the simulation (I think this should be 0 if t = tod)	influence of circadian process - represents A in this model
	2.02	4.13
	Sleep Inertia Initial	Sleep Inertia Recovery
	extent of alterness reduction at time of waking $(typically = -5.72)$, but sign is reversed for 2DM	exponential recovery of alterness (typically = -1.51)
	5.72	-1.51

Appendix: FIPS Comparison Chart

	FIPS	Commercial Tools	Published Models
Expertise Required	✓ Any	✓ Minimal Expertise	\mathbf{X} Experts only
Fatigue Forecasting	\checkmark	\checkmark	\checkmark
Introspectable	\checkmark	×	\checkmark
Modifiable/Tailorable	\checkmark	×	\checkmark
Multiple Models	\checkmark	×	—
Parameter estimation	\checkmark	×	—
Cost	Free	Expensive	Free
Sleep Prediction	×	\checkmark	_