

Australian Government

Department of Defence Defence Science and Technology Organisation

Application of Bayesian Updating to the Risk Analysis of Aircraft Structures

Dr. Ribelito Torregosa and Dr. Weiping Hu Air Vehicles Division, DSTO, Australia

Presented by Ribelito Torregosa

Outline of the presentation

- Relevance of Probabilistic Risk Analysis (PRA) to aircraft structural integrity assessment and management of military aircraft
- Data required for PRA
- The use of successful flights to improve PRA results using Bayesian updating

UNCLASSIFIED

Conclusion

Application of probabilistic risk analysis

- Complement the Damage Tolerance Analysis
- Determine inspection intervals
- Selection of NDI technique
- Aid in making decision on component replacement
- Aid in deciding (military) aircraft retirement

Role of probabilistic risk analysis in ASIP

Aircraft Structural Integrity Program (ASIP) Parts

Quantitative Hazard Probability

MIL-STD 1530C :

Probabilistic risk analysis provides a quantitative measure for the specific hazard level

4

Challenges in probabilistic risk analysis

Predicting too far ahead increases uncertainty

Incorporating new observation into the data improves prediction

Risk analysis of fracture

Risk - probability of failure or unstable fracture
Failure occurs when;

 $\sigma \geq \text{Residual strength}$, RS

Residual strength decreases with increase of crack size

Parameters needed to conduct a risk analysis of fracture

- EIFS distribution
- Master crack growth curve
- Residual strength curve
- Peak stress exceedance curve

Probabilistic Risk Analysis of Fracture – (Parameters)

What is Equivalent Initial Flaw Size (EIFS)?

Influence of EIFS distribution to the Probability of failure

Ways of updating the EIFS distribution

10

Bayesian updating concept

Classical (frequentist) statistics

Classical (frequentist) statistics

Bayesian statistics

Updating the EIFS distribution using flight hour data

Probabilistic Risk Analysis of C130-H CW-1 Location

1) Bayesian aircraft risk updating

2) Bayesian fleet risk updating (no failure observed)

UNCLASSIFIED

. than conventional risk output

2) Bayesian fleet risk updating (failure is observed)

Flight hours

Conclusions

- Updating risk analysis results can be done by utilising flight hours information
- Bayesian updating using the flight history of a particular aircraft being analysed only marginally improved the prediction for that aircraft.
- Bayesian fleet updating using fleet data shows a moderate risk reduction when no failure is observed and significant increase of risk values when failure is observed in a fleet.
- The Bayesian fleet updating risk values closer to observed PoF than conventional risk results.
- Risk of failure is not constant over the flight history and must be reviewed when more data become available

Questions ?

Updating the EIFS distribution by Bayesian inference

