

Australian Government

Department of Defence Defence Science and Technology Organisation

C-130H CW-1 Probabilistic Risk Analysis

Ribelito Torregosa and Weiping Hu

Presented by Dr. Ribelito Torregosa

Air Vehicles Division, DSTO

Outline of the Presentation

- Objective of the research
- Risk model the probability of failure
- Data development
- Implementation and verification
- Analysis of CW1
- Conclusion

Objective of the research

Develop in-country capability for Probabilistic Risk Analysis
 Develop Equivalent Initial Flaw Size distribution from tear down inspection data
 Develop analysis tools for probabilistic risk analysis
 Conduct a risk analysis on C130H
 Replicate the results of LM Aero CW-1 PRA

What is Risk in the context of this paper?

Risk - probability of failure or unstable fracture

Failure occurs when;

 $\sigma \geq \text{Residual strength}$, RS

Schematic of Probabilistic Risk Analysis (PRA)

Equivalent Initial Flaw Size Distribution (EIFS)

Fictitious crack size at time zero.

Regressed using CG curve

Not a material property

Dependent on CG curve used

EIFS calculation procedure

Mean of crack data = 0.20 in.

Assumed as baseline crack size

EIFS calculation procedure

Life distribution at a=0.20 in

Master Crack Growth Curve

CG curve back extrapolated

Original CG curve

Crack length, a (inches)

Extrapolated CG curve

Flight hours (EBH)

Peak stress distribution

The distribution of peak stresses of the cyclic load over a flight.

Residual strength, RS

RS = Minimum
$$\left[\sigma_{cr} = \frac{K_c}{\sqrt{\pi a}\beta(a)}, \sigma_{ys}\right]$$
 where $:\sigma_{ys}$ = yield strength

Holes

Monotonically decreasing

Probability of detection

POD a function of crack sizePOD influenced by many factors

@ Eff. POD(a) = POI x POD(a)

• Probability of inspection (POI) accounts for variability of inspection at various sites

Equivalent repair crack size distribution

when considering inspection effects
 crack distribution if inspection is *perfect* can be assumed identical to EIFS

> Perfect inspection will only lead to equivalent repair crack size distribution not zero cracks $f_{after}(a) = P \cdot f_R(a) + [1 - POD(a)] \cdot f_{before}(a)$ $f_R(a):$ equivalent repair crack distributi on $f_{before}(a):$ crack distributi on before inspection $f_{after}(a):$ crack distributi on after inspection

Analysis Tools

>Tools : Risk Analysis Program options

PROF

- Distribution models are fixed
 - Peak stress can only be modelled as Gumbel type 1,
 - o Fracture Toughness can only be modelled as Normal Distribution,
 - Probability of Detection (POD)
 can only be modelled by
 Lognormal Distribution

Does not have flexibility

Analysis Tools

It was decided to use In-house analysis program for the following reasons :

- To develop a program that has more flexibility of the choice of distribution
- To develop a program that can be integrated with exising DSTO programs
- To gain more understanding and confidence on probabilistic risk analysis

Analysis Process

Probability of Fracture (POF)

$$\cdots POF = \int_{0}^{\infty} f(a) \left(POF(a) \right) da = \int_{0}^{\infty} f(a) \left(1 - \int_{0}^{s_{RS}} \frac{(a)}{f(s)} ds \right) da$$

Where : s = stress, a = crack size, $a_{rs} = critical crack size$, $s_{RS} = residual strength$

$$POF = \int_{0}^{F_{c}} POF(F^{-1}(u)) du + (1 - F_{C})$$

PROF program > Integration *about probability*, F_c

$$POF = \sum_{i=1}^{n_{CR}} PMF(a_i) \left[1 - \sum_{j=1}^{k_{RS}} PMF(s) \right] + \left[1 - F(a_{CR}) \right]$$

DSTO in-house program

>Integration about the crack size, a

Verification of DSTO In-House Program

Sample problem 1 – Comparison with PROF EIFS CDF **EIFS** 1.0E+00 Peak stress exceedance 1.0E-02 **PROF** LOE-04 ۵. 1.0E-06 **S**_{max} 1.0E-08 Crack growth curve PROF DSTO **DSTO** 1.0E-10 **FLIGHT HOURS** a ✓ Data used from *PROF* Time Results are compatible **Residual strength** Validates the result from DSTO RS

а

DSTO

Verification of DSTO In-House Program

Sample problem 2 – Comparison with PROF EIFS CDF **EIFS** 1.0E+00 Peak stress exceedance 1.0E-02 **PROF** 1.0E-04 ۵. 1.0E-06 **S**_{max} 1.0E-08 Crack growth curve PROF - DSTO **DSTO** 1.0E-10 FLIGHT HOURS a \checkmark Data used from C130 Time Results are compatible **Residual strength** Validates the result from DSTO RS

а

Verification of DSTO In-House Program

Sample problem 3 – Comparison with PROF **EIFS** CDF **EIFS** Inspection @ 40000 EBH 1.0E+00 Peak stress exceedance 1.0E-02 **PROF** 1.0E-04 1.0E-06 SFPoF 1.0E-08 0 1.0E-10 S_{max} 1.0E-12 PROF DSTO DOUBLE PRECISION 1.0E-14 DSTO SINGLE PRECISION Crack growth curve 1.0E-16 30000 60000 **DSTO** 20000 40000 50000 70000 80000 90000 Flight Hours a Lower using double precision Time Higher using single precision **Residual strength** RS CDF POD DSTO ล а

а

<u>After inspection results</u> checked against Sample Problem from Air Force Research Laboratory Report (<u>AFRL-RB-WP-TR2010</u>)

COMPARISON BETWEEN PROF, DSTO IN-HOUSE AND HAND CALCULATION

DSTO In-house program results much closer to 2010 Guidelines Risk and Reliability handbook

AFRL-RB-WP-TR-2010-XXXX

STRUCTURAL TECHNOLOGY EVALUATION AND ANALYSIS PROGRAM (STEAP) FA8650-04-D-3346 Subcontract: F3346-09-43-SC01-01 (GDIT) Aircraft Structural Risk & Reliability Analysis Handbook Phase 2

Robert P. Bell, Alan P. Berens, Thomas Brussat, Joseph P. Gallagher, Joseph W. Cardinal, James Rudd Universal Technology Corporation

MAY 2010

Mid Year Report

Presently treat as FOUO. (Final distribution to be evaluated by Air Force; intention is to be "Distribution Statement A: Approved for public release; distribution unlimited.)

AIR FORCE RESEARCH LABORATORY AIR VEHICLES DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7541 AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE

FOR OFFICIAL USE ONLY

DSTO

PROF and DSTO In-House Analysis Program

Why is there difference between PROF and DSTO results after inspection?

- 1) CDF curve is extrapolated until the critical crack size (see dashed line)
- 2) Extrapolation is based on exponential equation. Thus magnitude of error is also exponential.

PROF and DSTO In-House Analysis Program

Why is there difference between PROF and DSTO results after inspection?

- 1) CDF curve is extrapolated until the critical crack size (see dashed line)
- 2) Extrapolation is based on exponential equation. Thus magnitude of error is also exponential.

C130H CW-1 Risk Analysis

Crack Propagation Scenario Analysed

Crack propagation I, II, III, IV, V, VI, VI

Analysis assumes a crack phase by phase approach
 Multi site damage (MSD) not considered

Comparison of Probability of Failures

Effect of inspection

Effect of inspection shows time lag

Effect of varying inspection times

Inspection more efficient when delayedRisk almost identical after second inspection

Concluding Remarks

- Methodology to conduct a Probabilistic Risk Analysis has been developed
- DSTO's in-house PRA analysis software give identical results with PROF

Effect of Inspection

- Reduction of failure probability from inspection is more effective when done later in its fatigue life
- When inspection is done early, the reduction of failure probability is not immediate.

Concluding Remarks (cont.)

- Effect of varying inspection times
- Inspection time needs to consider the risk level to optimize failure risk reduction.

Any question?

EIFS Regression Procedure

EIFS calculation procedure

Life distribution at a=0.20 in