

Australian Government

Department of Defence Defence Science and Technology Organisation

Real-time Risk Management of Aircraft Fleet Based on the Probability of Failure of Aircraft Structures

Dr. Ribelito Torregosa Aerospace Division, DSTO, Australia

16th Australian International Aerospace Congress, Melbourne, 23-24 Feb. 2015

Science and Technology for Safeguarding Australia

Outline of this presentation

Introduction of Probabilistic Risk Analysis (PRA) of Fracture

Application of PRA

Real-time risk risk analysis

Conclusion and future work

16th Australian International Aerospace Congress Melbourne, 23-24 Feb. 2015

Probabilistic risk analysis (PRA) of fracture

1. MIL-STD 1530C requirement Aircraft Structural Integrity Program (ASIP)

16th Australian International Aerospace Congress Melbourne, 23-24 Feb. 2015

Role of probabilistic risk analysis in ASIP (MIL-STD- 1530C)

Aircraft Structural Integrity Program (ASIP) Tasks

16th Australian International Aerospace Congress Melbourne, 23-24 Feb. 2015

Probabilistic risk analysis (PRA) of fracture

- P Risk - probability of failure or unstable crack growth
- (P Failure occurs when applied stress exceeds the residual strength

16th Australian International Aerospace Congress Melbourne, 23-24 Feb. 2015

UNCLASSIFIED

Probability of Failure (PoF) calculation:

$$PoF = \int_{0}^{\infty} f(a) \left(1 - \int_{0}^{S_{RS}(a_{CT})} f(s) ds \right)$$

Where :

s = stress*a* = crack size a_{cr} = critical crack size s_{RS} = residual strength f(a)= crack size probability density function f(s)= stress probability density function

1. Analysis of fracture of airframes Probabilistic vs. Deterministic

7

DSTO involvement in C-130J Full Scale Fatigue Test

credits to : D. Hartley, R. Ogden and L. Meadows

16th Australian International Aerospace Congress Melbourne, 23-24 Feb. 2015

Deterministic approach (Safety by Inspection)

UNCLASSIFIED

Probabilistic approach - Operational life limit (OLL)

Advantage:

In addition to safe inspection intervals, identifies the operation life limit (OLL)

DSTO

2. Improving the accuracy of probabilistic risk analysis

Real-time risk assessment

Real-time risk analysis (RTRA)

- continuous analysis to evaluate information at any given point of time

RTRA is commonly conducted for various assets at risk

What about aircraft structures?

Risk analysis ? - Yes Real-time risk analysis ? - No At risk \$\$\$ millions ??

16th Australian International Aerospace Congress Melbourne, 23-24 Feb. 2015

UNCLASSIFIED

UNCLASSIFIED

Understanding risk analysis of aircraft structure

Interpreting Probability:

- \succ P_n = probability that an aircraft will fail at time, t_n
- ✓ P_n = probability that an aircraft will fail between t=0 and t_n

Updating the risk analysis of fracture

Real-time risk analysis of an aircraft

- \checkmark
- **Risk curve changes with time** \checkmark

UNCLASSIFIED

Melbourne, 23-24 Feb. 2015

Real-time risk analysis of aircraft fleet

Makes full use of fleet information

Most beneficial to low flight hour fleet members

Real-time risk analysis of aircraft fleet

Makes full use of fleet information

Most beneficial to low flight hour fleet members

17

Real-time risk analysis of aircraft fleet

> Makes full use of fleet information

Most beneficial to low flight hour fleet members

Melbourne, 23-24 Feb. 2015

UNCLASSIFIED

3. Real-time risk analysis sample problem

Real-time risk assessment (no failure)

16th Australian International Aerospace Congress Melbourne, 23-24 Feb. 2015

Real-time risk assessment (failure observed)

FracRisk program

Conclusion

- 1. Real-time risk analysis can improve the reliability of the risk prediction by progressively reducing the high uncertainties in the initial prediction;
- 2. Real-time risk analysis can be used to optimize the fleet utilization; and
- 3. Real-time risk analysis presents a framework of identifying which fleet member's risk of failure is acceptable when one fleet member fails.

Future work

Apply the method to a real fleet to supplement the existing management strategy.

16th Australian International Aerospace Congress Melbourne, 23-24 Feb. 2015

UNCLASSIFIED

Questions?

16th Australian International Aerospace Congress Melbourne, 23-24 Feb. 2015