

Australian Government Department of Defence Science and Technology

A comparative evaluation of a deterministic and probabilistic approach for determining safety inspection intervals of airframe structures

Ribelito Torregosa and Weiping Hu Airframe Technology and Safety, Aerospace Division Defence Science and Technology Group

Presented by: Dr Ribelito Torregosa

17th Australian Aerospace Congress, 26-28 February 2017

Motivations of this research

"Purely deterministic criteria and methods were gradually supplemented or replaced with probabilistic approach"

<u>.</u>

...

- Rick Ryan, NAVAIR AASIS 2015

DS

Economic pressure to extend fleet usage

• • • • •

Safety of aircraft

Motivations of this research

Which is

Australian Aerospace Congress, 26-28 February 2017

Fatigue failure risk analysis – what it brings to Defence

Science and Technology for Safeguarding Australia

Cost of ownership of military aircraft

•

...

.....

H-

....

·

....

Fatigue failure risk analysis :

- Operational life of an aircraft
- Safety inspection interval

Australian Aerospace Congress, 26-28 February 2017

17th

5

GROUP

US Data Science and Technology for Safeguarding Australia

When does fatigue failure occur?

Fatigue failure occurs when :

 $K_{C} \leq S \cdot \beta(a) \sqrt{\pi a}$ or S > Residual Strength

DS

There are infinite number of combinations of stresses (S) and crack sizes (a) that will cause failure

Kc : stress intensity factor S : cyclic stress applied A: crack size $\beta(a)$: geometry correction factor

17th Australian Aerospace Congress, 26-28 February 2017

Science and Technology for Safeguarding Australia

Deterministic vs Probabilistic approach

"Those who will begin with certainties, shall end in doubts; but those who will be content to begin with doubts, shall end in certainty" - Francis Bacon

-

DS

Deterministic approach – inspection interval

As per MIL-STD 1530D :

17th Australian Aerospace Congress, 26-28 February 201

What does MIL-STD-1530D says?

- Initial inspection shall occur at one-half the life from max probable initial damage to the critical damage size
- Repeat inspections at or before one-half the life from minimum detectable size to the critical damage size

*a*₀ = maximum probable initial damage size (first inspection)
 OR

*a*₀= maximum detectable damage size (repeat inspections)

<u>ا</u>

Inspection interval - Deterministic approach

Well understood

∷•

Assuring

- Can not be used to predict the operational life limit, OLL
- How many inspections before retiring an aircraft?

DST

•

H-

....

....

DS

Probabilistic approach – inspection interval

As per MIL-STD 1530D :

Australian Aerospace Congress, 26-28 February 201

<u>.</u>

...

....

What does MIL-STD-1530D says?

- Risk analysis shall be used to determine if reduction in inspection intervals required,
- PoF=10⁻⁷ (acceptable risk)

Inspection interval - Probabilistic approach

- Not well understood
- Not assuring

....

...

...

....

ŀ

H-

Can predict Operational Life Limit (OLL)

GROUP

Science and Technology for Safeguarding Australia

Comparison of Probabilistic and Deterministic Predictions using Coupon Test Results

17th Australian Aerospace Congress, 26-28 February 2017

Coupon test

b-

....

....

H-

17th Australian Aerospace Congress, 26-28 February 2017

13

- Initial crack size known
- Actual crack growth curve measured

.

.

DST GROUP

1

Validation of Probabilistic and Deterministic Fatigue **Life Predictions**

Probabilistic prediction

Using DSTG test coupons

 Fixed fracture toughness, K_c Accuracy: 4 out of 5

ġ.

....

...

.....

∷•

17th Australian Aerospace Congress, 26-28 February 2017

15

 Variable fracture toughness, K_C Accuracy: 5 out of 5

> **DST** GROUP

.

Deterministic vs Probabilistic prediction

DST Group test coupons

Test coupon fatigue lives (Load blocks)	Independent Trials	Deterministic analysis (FS=2.0)	Deterministic analysis	Probabilistic analysis (Fixed K _c)	Probabilistic analysis (Variable K _c)		
		Predicted safe hours (Load blocks)					
12.1 (min) 16.1 (max)	1	7.7	15.4	11.5	9.9		
	2	7.6	15.2	12.4	10.4		
	3	7.3	14.6	11.1	9.7		
	4	7.8	15.6	11.2	10.2		
	5	7.5	15.0	11.6	10.2		

Note: Safe prediction < 12.1

- Probabilistic prediction closer to test results
- Probabilistic fracture toughness safer prediction
 - Deterministic more (over?) conservative

17th Australian Aerospace Congress, 26-28 February 2017

.

÷-

DS' GROL

Deterministic vs Probabilistic prediction

ŀ

....

....

H-

• Using Virkler test data

Master crack growth curve

Australian Aerospace Congress, 26-28 February 2017

Deterministic vs Probabilistic prediction

Using Virkler data

Test coupon fatigue lives (Cycles)	Deterministic prediction safe life FS=2.0 (Cycles)	Deterministic prediction safe life (Cycles)	Probabilistic prediction Fixed K _c value	Probabilisti Mean K _c = 2	Probabilistic prediction Mean K _c = 25 Mpa-m ^{1/2}	
			Safe life (Cycles)	St. dev.	Safe life (Cycles)	
222000 (min) 320000 (max)	129700	259400	231117	1.5	188101	
				1.0	210649	
				0.8	215851	
				0.5	223529	

Note: Safe prediction < 222000

Higher assumed fracture toughness (Kc) variability leads to safer prediction

17th Australian Aerospace Congress, 26-28 February 2017 **Q Science and Technology for Safeguarding Australia**

Inspection Interval Comparison - Lessons Learned

- Deterministic only ----> Safe
- Probabilistic only ——> Safe
- Deterministic + Probabilistic = OR
 Safe and economical

Conclusions:

- 1. Both the deterministic and probabilistic approach gave conservative predictions but the probabilistic approach predicts a life closer to the actual safe life
- 2. Without the use of a factor of safety, probabilistic prediction is more conservative
- 3. The application of both deterministic and probabilistic approach in predicting the safe fatigue life and inspection interval provides increased confidence in the prediction

Future work:

Australian Aerospace Congress, 26-28 February 2017

- Application of both deterministic and probabilistic analysis to C-130J test interpretation
- Application of probabilistic to FA-18 structural integrity assessment to supplement the deterministic analysis

Questions?

17th Australian Aerospace Congress, 26-28 February 2017 21 Science and Technology for Safeguarding Australia 21

DS.

Safety inspections requirements

What does MIL-STD-1530D says?

Australian Aerospace Congress, 26-28 February

- a. Initial inspection shall occur at one-half the life from max probable initial damage to the critical damage size
- b. Repeat inspections at or before one-half the life from minimum detectable size to the critical damage size
- c. Risk analysis shall be used to determine if reduction in inspection intervals required, etc... PoF=10⁻⁷ (acceptable risk)

Deterministic

Science and Technology for Safeguarding Australia

Inspection Interval Comparison - Lessons Learned

Deterministic only =

Probabilistic only =

Both Deterministic and Probabilistic =

