

Australian Government Department of Defence Science and Technology

Preliminary Investigation of Deterministic and Probabilistic Risk Assessment of Fatigue Failures Using Experimental Results

Dr. Ribelito F. Torregosa and Dr. Weiping Hu Aerospace Division

Defence Science and Technology Group, Australia

Presented by Ribelito F. Torregosa

9th European Workshop on Structural Health Monitoring, Manchester, UK, 10-13 July 2018

Outline of presentation

Fatigue failure risk analysis – what it brings to Defence

÷

÷

÷

...

÷.

GROUP

When does fracture failure occur?

Fracture failure occurs when :

 $K_{C} \leq S \cdot \beta(a) \sqrt{\pi a}$
or
S > SRS

Kc : stress intensity factor

- S : applied stress
- a: crack size
- $\beta(a)$: geometry correction factor

 S_{RS} =residual strength [min(Fy, $\frac{K_C}{\beta(a)\sqrt{\pi a}}$)]

Fy = yield strength

Probability of Failure

- Risk probability of failure or unstable fracture
- Failure occurs when; $\sigma \ge \text{Residual}$ strength

Probability of Failure (PoF) calculation:

$$PoF = \int_{0}^{\infty} f(a) \left(1 - \int_{0}^{S_{RS}(a)} f(s) \, ds \right) da$$

Where :

s = stress

a = crack size

s_{RS}= residual strength

f(a)= crack size probability density function
f(s)= maximum stress probability density
function (per given time interval)

Trend Towards Probabilistic Approach in Structural Integrity Management

"In the future, structural integrity decisions will be based on Hazard Risk Analysis (HRA) and Hazard Risk Index, like it or not!"

Aircraft Structural Integrity Management – MIL STD 1530D

- a) The initial inspection shall occur at or before one-half the life from the assumed maximum probable initial damage size to the critical damage size.
- b) The repeat inspection intervals shall occur at or before one-half the life from the minimum detectable damage size (based on the probability of detection established by the NDIT described in 5.1.6) to the critical damage size.
- c) <u>Risk analysis shall be used</u> to determine if a reduction in the inspection intervals are required to control the safety risk to an acceptable level or <u>to</u> <u>reduce economic or availability consequences</u> associated with damage repair.

6

Deterministic (Initial inspection)

AASIS 2015

Deterministic vs Probabilistic approach

"Those who will begin with certainties, shall end in doubts; but those who will be content to begin with doubts, shall end in certainty" - Francis Bacon

Probabilistic Risk Analysis of Fracture – (Parameters)

Influence of EIFS distribution to the Probability of **Failure**

÷

.....

∷∙

New modelling of the Equivalent Initial Flaw Size (EIFS) **Distribution**

10 Science and Technology for Safeguarding Australia

Innovation on Initial Flaw Size Distribution Modelling

Innovation on Initial Flaw Size Distribution Modelling

 Lognormal distribution risk prediction way higher

Impact to Defence

 Preliminary results show use of bounded distribution (i.e., Beta distribution) will reduce inspection cost

When to conduct Safety Inspection?

According to MIL-STD1530

Deterministic method 5.4.3.1.1 NDI intervals

The initial inspection shall occur at or before one-half the life from the assumed maximum probable initial damage size to the critical damage size.

.

÷

Probabilistic method

DST

5.5.6 Structural Risk Analysis Update

A probability of catastrophic failure at or below 10-7 per flight for the aircraft structure is considered adequate to ensure safety for long-term military operations.

Assessment of Deterministic and Probabilistic Approaches to Inspection Intervals Specified by MIL-STD1530

Using two experimental data

Experimental Results Used in the Validation

....

.

DST GROUP

Science and Technology for Safeguarding Australia

Safety Inspection Prediction : Deterministic vs Probabilistic

÷

÷

....

.

....

DS GROU

Assessment using Virkler Data

Minimum				
specimen fatigue life	Deterministic	Probabilistic Fixed Kc	Probabil Mean = 25 MPa	istic Kc a√ <i>m</i>
(Cycles)	Kc = 25 MPa \sqrt{m}	= 25 MPay <i>m</i>	Kc standard deviation	
	129700	231117	1.5	188101
222200			1.0	210649
222790			0.8	215851
			0.5	223529

Predicted inspection time (cycles)

"next flight" = "next load cycle"

Safety Inspection Prediction : Deterministic vs Probabilistic

Safety Inspection Prediction : Deterministic vs Probabilistic

Comparison with DST experimental data

	Minimum	Trial	Predicted inspection time		
	specimen fatigue life (Load blocks)		Deterministic (Load blocks) Kc=32 MPa \sqrt{m}	Probabilistic (Load block) P=10 ⁻⁷ Kc=32 MPa√m	
		1	7.7	9.9	
	17 1	2	7.6	10.4	
]	12.1	3	7.3	9.7	
		4	7.8	10.2	
		5	7.5	10.2	

"next flight" = "next load block"

Safety Inspection Prediction : Deterministic vs Probabilistic

Conclusions

- Probabilistic based prediction consistently close to DEF STAN acceptable risk
- Slight increase in the assumption of the variability of the fracture toughness value will result to conservative prediction from probabilistic method

Future Works

- ***** Use of actual aircraft teardown crack data in the analysis
- Consider aircraft single flight hours as the metrics in the failure lifeing

Science and Technology for Safeguarding Australia 20

Questions? 2

DST GROUP Science and Technology for Safeguarding Australia 21