

Australian Government

Department of Defence Defence Science and Technology Organisation

Effect of models and derivation methods for initial flaw size distribution on probability of failure of airframes

Dr. Ribelito Torregosa and Dr. Weiping Hu Aerospace Division, DSTO, Australia

Presented by Ribelito Torregosa

9^h International Conference on Structural Integrity and Fracture, Sydney, 9-12 Dec. 2014

Science and Technology for Safeguarding Australia

Probabilistic risk analysis (PRA) of fracture is gaining popularity

Analysis parameters such as loads, material properties have varying degree of uncertainties; Balancing economic benefits and risks; Offers flexibility of solutions in solving engineering problems; and Enables interaction between engineers, managers and stakeholders

Probabilistic risk analysis (PRA) of fracture

Risk - probability of failure or unstable fracture
Failure occurs when; $\sigma \ge \text{Residual strength}$

Probability of Failure (PoF) calculation:

$$PoF = \int_{0}^{\infty} f(a) \left(1 - \int_{0}^{S_{RS}(a_{cr})} f(s) ds \right)$$

Where :

s = stress

a = crack size

 $a_{\rm cr}$ = critical crack size

s_{RS}= residual strength

UNCLASSIFIED

f(a)= crack size probability density function

f(s)= stress probability density function

DSTO

3

1. Analysis of fracture of airframes Probabilistic vs. Deterministic

DSTO involvement in C-130J Full Scale Fatigue Test

credits to : D. Hartley, R. Ogden and L. Meadows

UNCLASSIFIED

Deterministic approach of fracture prevention on airframes

Weakness of the method :

UNCLASSIFIED

Deterministic method implies that safety of an airframe can be maintained indefinitely through inspection

Probabilistic approach of fracture prevention on airframes

Set the maximum acceptable PoF

Sydney, 9-12 Dec. 2014

Advantage of the method :

UNCLASSIFIED

Probabilistic method shows that there is a limit to the number of inspections that can be conducted

7

2. MIL-STD1530 Standard requirement Aircraft Structural Integrity Program (ASIP)

9th International Conference on Structural Integrity and Fracture Sydney, 9-12 Dec. 2014

Role of probabilistic risk analysis in ASIP (MIL-STD- 1530C)

9th International Conference on Structural Integrity and Fracture Sydney, 9-12 Dec. 2014

Input Data for Probabilistic Risk Analysis of Fracture on Airframes

In this study : Discrepancy of PoF values based on methods of deriving the EIFS distribution is investigated

UNCLASSIFIED

3. Methods of derivation the EIFS Distribution

9th International Conference on Structural Integrity and Fracture Sydney, 9-12 Dec. 2014

Time to Crack Size (TTCS) Method of Deriving EIFS Distribution

Advantage of the method :

 Eliminates unreasonably large EIFS values

Disadvantage of the method :

- Dependent on arbitrary value of baseline crack size
- Different baseline crack size give different EIFS values

Direct Method of Deriving EIFS Distribution

Advantage of the method :

 EIFS distribution can be expressed in a closed form equation

Disadvantage of the method :

 Unrealistically large EIFS values due to unbounded right tail of distribution

4. Test case

Application of various EIFS distribution models to the Probabilistic risk analysis of fracture of a military aircraft

Probabilistic Risk Analysis of C130-H CW-1 Location

Data Used for EIFS Distribution Regression Analysis

Data Used for EIFS Distribution Regression Analysis

- 1. Direct EIFS
- 2. TTCS Method with baseline crack size = 0.10 in
- 3. TTCS Method with baseline crack size = 0.20 in
- TTCS Method with baseline crack size = 0.30 in UNCLASSIFIED

Comparison of Cumulative Distribution Curves

Crack Size, x (in.)

18

DSTO

9th International Conference on Structural Integrity and Fracture Sydney, 9-12 Dec. 2014

Comparison of Cumulative Distribution Curves

Crack Size, x (in.)

9th International Conference on Structural Integrity and Fracture Sydney, 9-12 Dec. 2014

Comparison of Probability of Failures

Flight hours

- Direct EIFS method :
 - smallest mean EIFS
 - highest PoF values

TTCS method :

 mean EIFS values do not give directly correlation to PoF values

DSTO

Probability distribution's degree of influence on PoF

This study shows that :

- Mean value of the distribution has no influence on the Probability of Failure (i.e, <u>no correlation between</u> <u>mean EIFS and PoF</u>);
- 2. Right tail of the distribution has very high influence on the risk values; and
- 3. Distribution model must accurately model the extreme values of initial flaw sizes

UNCLASSIFIED

21

Conclusions

- 1. EIFS distribution derived by the Direct Method may over-estimate the probability of failure, when an unbounded distribution model is used;
- 2. EIFS distribution derived by the TTCS Method give probability of failure which are sensitive to the assumed baseline crack;
- 3. The mean of the EIFS distribution has very little influence on the SFPoF values; and
- 4. More accurate and realistic assumption of the upper bound of the EIFS distribution is necessary in analysing the fatigue failures of aircraft structures.

Future works :

- 1. To address unrealistically large EIFS, the use of bounded distribution such as Beta distribution will be investigated.
- 2. Apply probabilistic risk of fracture to the test interpretation of the on-going C-130J RAF and RAAF collaborative full scale fatigue test

UNCLASSIFIED

ural Integrity and Fracture

Questions?

UNCLASSIFIED

DSTO