

Australian Government Department of Defence Science and Technology

# Developments on Risk-Based Fatigue Failure Prediction for Application to Military Aircraft

### R. Torregosa, W. Hu and C. Wallbrink

Aerospace Division Defence Science and Technology (DST) Group, Australia Presented by Dr Ribelito F. Torregosa

11<sup>th</sup> International Conference on Structural Integrity and Failure, Perth, Australia, 3-6 December 2018



## **Outline of presentation**

Fatigue failure analysis – what it can deliver to Defence

When does fatigue failure occurs?

Why probabilistic approach in fatigue failure assessment?

O Oper asses

Operational safety of military aircraft based on fatigue failure assessment

Comparison of deterministic and probabilistic requirements of inspection intervals for military aircraft

### Conclusion

**...** 

### Fatigue failure analysis – what it can deliver to Defence as operator of large fleets of aircraft



÷

**...** 

### **DSTO involvement in C-130J Full Scale Fatigue Test**







credits to : D. Hartley, R. Ogden and L. Meadows

÷

.

**DST** GROUP



## When does fracture failure occur?





10

30

5

## Why probabilistic fracture failure prediction?

. .

**...** 

÷

÷

....

•







## $K_{\mathcal{C}} \leq S \cdot \boldsymbol{\beta}(a) \sqrt{\pi a}$

### Failure can occur

6

 ✓ at a wide range of crack sizes and stresses

÷

Infinite combinations of stress and crack to cause failure

GROUP

## **Deterministic vs Probabilistic approach**

"Those who will begin with certainties, shall end in doubts; but those who will be content to begin with doubts, shall end in certainty"

- Francis Bacon



## **Probability of Failure**

![](_page_7_Figure_2.jpeg)

![](_page_7_Picture_3.jpeg)

Risk - probability of failure or unstable fracture

Failure occurs when applied stress exceeds the residual strength

Probability of Failure (PoF) calculation:

$$PoF = \int_{0}^{\infty} f(a) \left( 1 - \int_{0}^{S_{RS}(a)} h(s) \, ds \right) da$$

Where :

s = stress

a = crack size

s<sub>RS</sub>= residual strength

f(a) = crack size probability density function h(s) = maximum stress probability density function (per given time interval)

## Crack size probability distribution, f(a) modelling

![](_page_8_Figure_2.jpeg)

![](_page_8_Figure_3.jpeg)

## **Operational safety based on fatigue failure assessment**

![](_page_9_Picture_2.jpeg)

10

### **Operational safety based on fatigue failure assessment**

### Inspection requirement by MIL-STD1530

11

÷

÷

....

....

![](_page_10_Figure_3.jpeg)

### DST developed risk-based fatigue failure assessment tool

![](_page_11_Figure_2.jpeg)

12 🔛

•

**.**....

....

÷

....

.

....

![](_page_11_Picture_3.jpeg)

![](_page_11_Figure_4.jpeg)

#### Independent analysis tool evaluation by QinetiQ Australia

**DST** GROUP 

## Assessment of Deterministic and Probabilistic Approaches to Inspection Intervals Specified by MIL-STD-1530D

![](_page_12_Picture_2.jpeg)

Aircraft structural integrity standards:

- Def-Stan 970 (UK)
- Mil-Std1530 (US)

....

÷

DS.

::•

**DST** GROUP

### **Experimental Results Used in the Assessment**

![](_page_13_Figure_2.jpeg)

![](_page_13_Figure_3.jpeg)

## **Comparison of deterministic and probabilistic** requirements of inspection intervals as specified by **MIL-STD-1530D**

![](_page_14_Picture_2.jpeg)

## **Safety Inspection : Deterministic vs Probabilistic**

![](_page_15_Figure_2.jpeg)

**Safety Inspection : Deterministic vs Probabilistic** 

![](_page_16_Figure_2.jpeg)

## **Safety Inspection : Deterministic vs Probabilistic**

### Assessment with DST experimental data

| Minimum<br>specimen<br>fatigue life<br>(Load blocks) | Trial | Predicted inspection time                              |                                                                      |  |
|------------------------------------------------------|-------|--------------------------------------------------------|----------------------------------------------------------------------|--|
|                                                      |       | Deterministic<br>(Load blocks)<br>Kc=32 MPa $\sqrt{m}$ | Probabilistic<br>(Load block)<br>$P=10^{-7}$<br>Kc=32 MPa $\sqrt{m}$ |  |
| 12.1                                                 | 1     | 7.7                                                    | 9.9                                                                  |  |
|                                                      | 2     | 7.6                                                    | 10.4                                                                 |  |
|                                                      | 3     | 7.3                                                    | 9.7                                                                  |  |
|                                                      | 4     | 7.8                                                    | 10.2                                                                 |  |
|                                                      | 5     | 7.5                                                    | 10.2                                                                 |  |

![](_page_17_Figure_4.jpeg)

Objective of the test:

**...** 

÷

DST

- Experimentally evaluate if the first failure of all test specimen happens before PoF=1x10<sup>-7</sup>?
- Investigate the effect of material property variability

### **Safety Inspection : Deterministic vs Probabilistic**

![](_page_18_Figure_2.jpeg)

### **Comparison of allowable risks from standards**

|                      |                                     | MIL-1530D                             | Def-Stan 970                          |                                                                   |
|----------------------|-------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------------------------|
|                      | First inspection<br>(deterministic) | Single Flight                         | Single Flight                         | (Probability of failure of an<br>aircraft during its entire life) |
|                      |                                     | Probaility of                         | Probaility of                         |                                                                   |
|                      |                                     | failure                               | failure                               |                                                                   |
|                      |                                     | (Fixed K <sub>c</sub> )               | (Variable K <sub>c</sub> )            |                                                                   |
|                      |                                     | P=10 <sup>-7</sup> , 10 <sup>-5</sup> | P=10 <sup>-7</sup> , 10 <sup>-5</sup> |                                                                   |
| Inspection times     |                                     | 11.5, 11.8                            | 9.9, 10.5                             | 10.3                                                              |
| (Blocks)             | 7.7                                 |                                       |                                       |                                                                   |
| Total Probability of |                                     |                                       |                                       |                                                                   |
| Failure              | 1/15401                             | 1/155, 1/99                           | 1/1790, 1/706                         | 1/1000                                                            |

Probabilistic approach inspection times from two standards are close
Deterministic approach requires inspection at much earlier time

20

### **Conclusions**

- Probabilistic based inspection interval is consistently close to the DEF STAN acceptable risk level
- Using probabilistic method, a slight increase in the variability of the fracture toughness value will result in a conservative estimate

### **Future Works**

- Use of actual aircraft teardown crack data in the analysis
- Application of probabilistic structural integrity assessment to RAAF aircraft fleets (from 2019)

# **Questions?**

![](_page_21_Picture_2.jpeg)